High Temperature Deformation and Microstructural Evolution of Homogenized AA 2026 Alloy

Author:

Kang HyeonWoo,Kim SooBin,Jang ByoungLok,Kim HeeKook

Abstract

AA 2026 is an improved version of AA 2024, an alloy with added Zr to reduce Fe and Si content and inhibit recrystallization during hot working. Al 2026 alloy has high strength and high damage resistance, so it is widely used in aircraft parts. In this study, in order to investigate the hot workability of AA 2026 and to optimize the hot forming parameters, hot compression tests were conducted in the temperature range of 300 to 450 o C, at a strain rate of 0.01 to 10 and in the 50% strain section. The true stress–true strain curve showed a dynamic softening phenomenon while the stress increased rapidly at a small strain and then remained steady. In order to evaluate its high temperature processability, the constitutive equations for flow stress, temperature, and strain were quantified based on the Arrhenius equation, and a process strain map was prepared. The peak stress accuracy of the constitutive equation was about 98.2%, which was consistent with the experimental data of AA 2026 under strain rate and temperature conditions. In addition, scanning electron microscopy (SEM) and backscattered electron diffraction pattern analyzer (EBSD) analyses were conducted to confirm the mechanism of the dynamic softening phenomenon. The CDRX phenomenon was confirmed under the high strain condition in the low temperature region and the DDRX phenomenon in the low strain condition in the high temperature region.

Funder

Ministry of Trade, Industry and Energy

Korea Evaluation Institute of Industrial Technology

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3