Bytizite Cu3SbSe3: Solid-State Synthesis and Thermoelectric Performance

Author:

Lee Go-Eun,Kim Il-Ho

Abstract

Bytizite (Cu3SbSe3 ) has attracted interest as a promising thermoelectric material because of its ultralow thermal conductivity; however, there are few experimental studies. This study investigated the optimal processing conditions for the synthesis of Cu3SbSe3 using mechanical alloying (MA) and hot pressing (HP). The MA powder exhibited an orthorhombic Cu3SbSe3 phase, which remained even after HP. However, secondary phases of permingeatite (Cu3SbSe4) and berzelianite (Cu1.78Se) were also identified in the X-ray diffraction patterns. Thermal analysis revealed that the MA powder and HP compacts exhibited a large endothermic peak near 727 K, which corresponds to the melting point of Cu3SbSe3 . Dense compacts with a relative density higher than 99% were obtained at HP temperatures above 573 K. Microstructural and elemental analyses confirmed the presence of the secondary phase Cu3 SbSe4 in the matrix of Cu3SbSe3 . However, the Cu1.78Se phase could not be observed. All specimens exhibited an electrical conductivity of (0.66–1.06) × 10 3 Sm-1, a Seebeck coefficient of 324–376 µVK-1, and a power factor of 0.09–0.11 mWm-1K-2 at 623 K. The thermal conductivity was lower than 0.7 Wm-1K-1 in the measured temperature range, mainly due to the phonon scattering caused by the lone-pair electrons of Sb. A dip in thermal conductivity was observed at 423 K, which was possibly caused by the order-disorder transition of bytizite. The dimensionless figure of merit ZT increased with increasing temperature, and the maximum <i>ZT</i> was 0.16 at 623 K.

Funder

Ministry of Education

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3