Material Selection: Material Perception Data Analysis Using Clustering Analysis and Association Rule Analysis of Data Mining

Author:

Choi Jaeho

Abstract

To select materials suitable for products, material perception, which is the feeling consumers have about materials, has been studied. Material perception data were obtained through surveys using digital logic for bipolar adjective pairs. The material perception data were analyzed through unsupervised learning of data mining. Prior to data analysis, to increase the reliability of the data, the homogeneity of the data between surveys was tested using clustering analysis, correlation analysis and chi-squared test. After checking the homogeneity of the data between surveys, the data were merged. The merged material perception data were analyzed using relative frequencies, hierarchical clustering, and association rules. The relative frequencies obtained from survey participants' selections were used to determine the prevailing perceptions of each material and as basic data for other analyses. In the hierarchical clustering analysis, hierarchy was identified using distances within clusters and distances between clusters. Through association rule analysis, the consumer's simultaneous perceptions of the material can be known, so not only the individual characteristics of the material but also the relational characteristics can be considered when selecting materials based on consumer's perception. The analyzed characteristics were designed into a material perception map, and this material perception map will be a powerful tool to help product designers make better choices that match consumers' perception and experience when selecting materials.

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3