Improvement of Photoelectrochemical Properties of CuO Photoelectrode by Li Doping

Author:

Bae Seongchan,Lee Sunghyeok,Ryu Hyukhyun,Lee Won-Jae

Abstract

We fabricated a Li doped CuO photoelectrode by doping CuO with Li to improve the photoelectrochemical properties of the CuO photoelectrode. The fabricated Li doped CuO photoelectrode was optimized by experimentally investigating Li doping concentration, annealing temperature, and spin coating deposition cycle. It was confirmed that Li doped CuO had increased light absorption, decreased energy band gap, and improved crystallinity. The Li-doped CuO photoelectrode had a porous surface, unlike the bare CuO photoelectrode, and had a low charge transfer resistance as well as a high flat band potential. The Li doping concentration experiment demonstrated that the 2 at% Li doped CuO photoelectrode had a superior photocurrent density value compared with a bare CuO photoelectrode. In the annealing temperature optimization experiment with a 2 at% Li doped CuO photoelectrode, it was found to have the best photocurrent density value at 500 oC. In experiments with various spin coating deposition cycles of the Li-doped CuO photoelectrode, the light absorption, energy bandgap, crystallinity, and electrical properties were affected by changes in the film thickness of the photoelectrode. In particular, we confirmed that a sample deposited with 4 spin coating cycles had the lowest interfacial resistance between the photoelectrode and the electrolyte, and the highest flat-band potential value. Consequently, we were able to obtain an improved photocurrent density of -1.68 mA/cm<sup>2</sup> compared to the bare CuO photoelectrode using the Li-doped CuO photoelectrode under the optimized conditions of Li 2 at%, an annealing temperature of 500 oC, and 4 cycles of spin coating depositions.

Funder

Ministry of Education

National research Facilities and Equipment Center

National Research Foundation of Korea

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3