Study on Hydrogen Diffusion and Sulfide Stress Cracking Behaviors of Simulated Heat-Affected Zone of A516-65 Grade Pressure Vessel Carbon Steel

Author:

Cho Dong Min,Park Jin-seong,Lee Jin Woo,Kim Sung Jin

Abstract

Hydrogen diffusion and sulfide stress cracking of simulated heat-affected zone (HAZ) of A516- 65 grade steel were examined using an electrochemical permeation technique, glycerin volumetric method, and constant loading method. HAZ samples were fabricated using a metal thermal cycle simulator with a welding heat input of 20, 35, and 50 kJ/cm. The fractions of bainite and martensite-austenite (M-A) constituent in coarse-grained HAZ (CGHAZ) and intercritical HAZ (ICHAZ) obtained by a simulated thermal cycle with a low heat input (20 kJ/cm) were higher than those with a higher heat input. These fractions contributed to the increase in the reversible hydrogen trap density (N<sub>[H]rev</sub>) and reversibly trapped hydrogen concentrations (C<sub>rev</sub>). Although CGHAZ had higher N<sub>[H]rev</sub> and C<sub>rev</sub> meaning that it is more likely to be vulnerable to brittle failure by hydrogen, actual fracture by sulfide stress cracking (SSC) occurred in ICHAZ composed of a mixture of soft ferrite/pearlite, and hard bainite and M-A. The hydrogen diffusion/trapping parameters, which were obtained from the electrochemical permeation or glycerin method, cannot be directly indicative of the resistance to SSC of the steel in a H<sub>2</sub>S environment. The susceptibility to SSC was more influenced by the level of M-A-localization and localized corrosion attack, acting as a stress intensifier under a tensile load.

Funder

Ministry of Trade, Industry and Energy

Korea Institute for Advancement of Technology

National Research Foundation of Korea

Ministry of Science and ICT

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3