Alleviating the Polysulfide Shuttle Effect by Optimization of 3D Flower-Shaped Vanadium Dioxide for Lithium-Sulfur Batteries

Author:

Jeong Su Hwan,Choi Hyeon-jun,Lee Sang Jun,Lee Dong Park,Eum Suyoon,Moon San,Yun Jong Hyuk,Kim Joo-Hyung

Abstract

With the rapid development of portable devices and Energy Storage Systems (ESS), secondary batteries with high energy density and high capacity are in great demand. Among various candidates, Lithium-sulfur (Li-S) batteries have been considered for next-generation energy devices given their high theoretical capacity (1675 mAh g<sup>-1</sup>) and energy density (2500 Wh kg<sup>-1</sup>). However, the commercialization of Li-S batteries faces challenges due to sulfur’s low electrical conductivity and the shuttle effect, caused by the dissolution of lithium polysulfide intermediates in the electrolyte during the charge-discharge process. Herein, to resolve these problems, we report the fabrication of a vanadium dioxide (VO<sub>2</sub>) composite via a simple hydrothermal method and optimize the structure of VO<sub>2</sub> for constructing an effective Multi-Walled Carbon Nano Tube (MWCNT) and 3D flower-shaped VO<sub>2</sub> (MWCNT@VO<sub>2</sub>) binary sulfur host by a simple melt diffusion method. In particular, the polar VO<sub>2</sub> composite not only physically absorbs the soluble lithium polysulfides but also has strong chemical bonds with a higher affinity for lithium polysulfides, which act as a catalyst, enhancing electrochemical reversibility. Additionally, MWCNT improves sulfur’s poor electrical conductivity and buffers volume expansion during cycling. The designed S-MWCNT@VO<sub>2</sub> electrode also exhibits better capacity retention and cycling performance than a bare S-MWCNT electrode as a lithium polysulfide reservoir.

Funder

National Research Foundation of Korea

Regional Innovation Strategy

Ministry of Education

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3