Thickness Dependence of Cu-layer-based Transparent Heaters

Author:

Choi Dooho

Abstract

In this study, ultrathin (4-40 nm) Cu-layer-based transparent heaters prepared on glass substrates were investigated for cost-effective applications. The Cu heaters were embedded between ZnO layers serving as anti-reflection and anti-corrosion layers. The Cu layer thicknesses varied in the range of 4-40 nm, and the corresponding structural, electrical, optical and thermal properties were evaluated. Cu was found to follow the Volmer-Weber 3D growth mode in the early deposition stage, where isolated islands grow and coalesce to form a continuous layer at ~12 nm. In the thickness regime of discontinuous Cu layers, a significant increase in sheet resistance was observed due to the reduced current paths and the high severity of electron scattering at the Cu/ZnO interfaces. Because of light absorption associated with the localized surface plasmon resonance (LSPR) in the presence of pores in the films, visible transparency peaks near the thickness of the complete film-closure, beyond which stronger light absorption decreases transparency. The sheet resistance of the transparent heaters was modulated in the range of 0.8-96.2 Ω/sq. The heating characteristics well follow Joule’s law which predicts a higher temperature for a lower-resistance heater at a given voltage. The measured temperature-power relation is linear, from which the important heater parameter of convective heat transfer coefficient is extracted.

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3