Development of Superhydrophilic 6061 Aluminum Alloy by Stepwise Anodization According to Pore-Widening Time

Author:

Park Youngju,Ji Hyejeong,Jeong Chanyoung

Abstract

This study created alumina structures with the highest hydrophilic properties on 6061 aluminum alloy. The anodization process was applied to make various aluminum oxide structures. To create uniform alumina structures on top of a 6061 aluminum alloy surface, after conducting the first anodization in 0.3 M oxalic acid at 40 V at 0 <sup>o</sup>C, the alumina was removed using a mixture of chromic acid and phosphoric acid. Then, secondary and tertiary anodization was performed using the same electrolyte conditions as the primary anodization for 30 minutes at 40 V, respectively. Pore-widening (PW) of oxide film formed after the secondary anodic oxidation was performed for 20, 30, and 40 minutes in 0.1 M phosphoric acid solution. The PW time control allowed various oxide structures to be created, and reduced the area of the outermost surface in contact with water droplets. The smaller the initial area of water droplets, the better the hydrophilic phenomenon. The surface area can be represented as a solid fractional value. Surfaces with solid fraction values of less than or equal to 0.5 were superhydrophilic. This well-controlled anodization process with a pore-widening step can be used to create excellent superhydrophilicity on various metallic substrates, expanding their usefulness and efficacy.

Funder

National Research Foundation of Korea

Ministry of Education

Korea Basic Science Institute

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3