Core-shell Structured YSZ/CeO<sub>2</sub> Composite Thermal Barrier Coating Fabrication and Properties

Author:

Lee Gye-won,Park Tae-jun,Choi Seonung,Kim Jong-il,An Gye-seok,Lee In-hwan,Oh Yoon-seok

Abstract

In this study, we researched changes in the properties of a Thermal Barrier Coating depending on the powder structure. For this purpose, we used YSZ (Yttria Stabilized Zirconia), a commercial Thermal Barrier Coating material, to produce a powder with a Core-Shell structure. Bulk samples were prepared by hot pressing to analyze their properties according to the powder structure, and Thermal Barrier Coating samples were prepared by APS (Atmospheric Plasma Spray) to compare differences in properties according to the powder structure. The results of the bulk sample analysis showed that the thermal conductivity of YSZ was 3~4.2 W/m*K, the CeO<sub>2</sub> mixed structure was 2.2~3.3 W/m*K, and the Core-Shell Composite was 2.2~2.9 W/m*K. The thermal Barrier Coating sample analysis showed that the TGO growth behavior was different depending on the powder structure. The YSZ coating sample was 7.24 µm, the YSZ+CeO<sub>2</sub> coating sample was 6.68 µm, and the Core-Shell coating sample was 4.79 µm. In the case of high-temperature thermal conductivity, YSZ and YSZ+CeO<sub>2</sub> showed similar results, but the Core-Shell coating sample had 79.07% thermal conductivity, compared to YSZ at 1000℃. These results indicate that the core-shell composite has improved thermal insulation performance and mechanical properties compared to YSZ, and it is expected that the core-shell composite will exhibit improved thermal properties compared to YSZ when applied to Thermal Barrier Coating.

Funder

Korea Institute of Ceramic Engineering and Technology

Publisher

The Korean Institute of Metals and Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3