Microstructure and Tensile Properties of Ni-Base Superalloy IN738LC according to Solidification Rate and Heat Treatment

Author:

Kim Byung-Hoon,Kong Byeong-Ook,Joo Yun-Kon,Ju Young-Kyu,Hong Hyun-Uk,Lee Je-Hyun

Abstract

The strength of Ni-base superalloys mainly depends on the γ' precipitates that improve the strength of the materials at high temperatures. The presence of γ' particles within the matrix restricts dislocation movement, and optimized heat treatments can tailor the size, shape, and volume fraction of γ'. In this study the effects of solidification rate and solution temperature on the tensile properties of IN738LC superalloy were investigated. The secondary dendritic arm spacing of casting materials with different diameters was measured and the solidification rate of the casting materials was derived by comparing the results of the solidification microstructure obtained from a directional solidification experiment. The D17 material, which had a faster solidification rate, showed higher values of tensile strength and yield strength than the D60 material, which had a slower solidification rate. The study also concluded that the monomodal γ' precipitates in the S80 material have higher tensile strength and yield strength at room temperature and 760℃ than the bimodal γ' precipitates in the S20 material. As for the deformation behavior at 760℃, an isolated stacking fault was observed in the S20 material only within the large γ’ precipitates. In the S80 material, the high dislocation density increased the yield strength due to the strong interaction between dislocations and fine γ’ precipitates.

Funder

Ministry of Trade, Industry and Energy

Korea Planning and Evaluation Institute of Industrial Technology

Publisher

The Korean Institute of Metals and Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3