Causes and Measures of Fume in Directed Energy Deposition: A Review

Author:

Kim Kang-Hyung,Jung Chan-Hyun,Jeong Dae-Yong,Hyun Soong-Keun

Abstract

Pores and cracks are known as the main defects in metal additive manufacturing (MAM), including directed energy deposition(DED). A gaseous fume is often produced by laser flash (instantaneous high temperature) during laser processing, which may cause various defects such as porosity, lack of fusion, inhomogeneity, low flowability and composition change, either. However the cause and harmful effects of fume generation in DED are known little. In laser processing, especially laser welding, many studies have been conducted on the prevention of fume because it generates defects that hinder uniform reactions between the laser beam and the materials. Generally, the fume occurs with easily vaporizing low melting point components or sensitive oxidizing elements. Unsuitable conditions are also known to have an effect, including laser power, travel speed, powder feed rate and shielding gas supply. Practically, there are many more fume generating factors in the DED process, and the lack of understanding requires a lot of trial and error. In this article the laser-related and weld metallurgy literatures were reviewed, focusing on the prevention of fume in powder DED. The causes of the fume, were explained to result from the stages of cavitation bubbles generated by the laser induced plasma and the nanoparticles released. Additionally, the effects of alloying components and environmental conditions for fume generation in the DED process were investigated, and suggestions are proposed to prevent fume.

Funder

Inha University

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3