Author:
Kim Dong-Guk,Jo Yong hee,Lee Yun-Soo,Kim Yong-You,Kim Hyoung-Wook,Kim Jung-Ki
Abstract
The effect of Cu content on the microstructure and mechanical properties of Al-8.0Zn-2.5Mg-xCu (x: 0, 1, 2, 3) aluminum alloys manufactured by the twin-roll casting process was investigated. The Al-8.0Zn-2.5Mg-xCu alloy showed an increase in surface defects with increasing Cu content. This is because the amount of residual liquid in the final solidification region increased from 9.6 wt.% to 18.3 wt.% as the Cu content increased from 0Cu to 3 Cu alloy. For the 3Cu alloy, as the amount of residual liquid in the final solidification region exceeded the critical point, a large number of surface defects and internal shrinkage defect were observed. The main secondary phases of the four alloys were the T(Mg32(Al, Zn)49) and η(MgZn2) phases, and their fraction increased with Cu content. These secondary phases mainly existed in the center segregation band, and a fine η(MgZn2) phase was additionally observed. In terms of mechanical properties, as the Cu content increased, the hardness of the center matrix, secondary phase, and overall hardness increased respectively. Although the yield strength increased, the tensile strength and elongation decreased because the center segregation band was widened from 684 μm to 790 μm with increasing Cu content.
Funder
Ministry of Science and ICT
Publisher
The Korean Institute of Metals and Materials
Subject
Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献