A Study on Uniaxial Tensile Deformation Behavior of Superelastic Titanium Alloy

Author:

Jeong Hye-Jin,Luu Viet Tien,Jeong Yong-Ha,Hong Sung-Tae,Han Heung Nam

Abstract

A superelastic titanium alloy was subjected to uniaxial tensile deformation at room temperature. The microstructural evolution and deformation mechanisms of the superelastic titanium alloy were investigated by electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). Multiple deformation mechanisms including stress-induced martensitic transformation (SIMT), dislocation slip, {332}<113> and {112}<111> mechanical twinning were identified with the increase in uniaxial strain. In the early stage of deformation, a SIMT from the bcc beta phase to orthorhombic martensite phase dominantly occurred. As the deformation proceeded, the phase fraction of the remained martensite which did not return to beta phase obviously increased due to dislocation slip and mechanical twinning. The kernel average misorientation (KAM) value obtained from EBSD data gradually increased with increasing the deformation, indicating that the dislocation evolution was produced by slip. This was well matched with the trend in the full width at half maximum (FWHM) value of the peak profile obtained from XRD data. In addition, the fraction of the {332}<113> twin was lower than that of the {112}<111> twin in the initial specimen. However, the {332}<113> twin rapidly increased compared to the {112}<111> twin as deformation increased. Therefore, it is confirmed that {332}<113> twinning and dislocation slip were the dominant mechanisms during plastic deformation.

Funder

Ministry of Science and ICT

National Research Foundation of Korea

Seoul National University

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3