Effect of Process Parameter and Scanning Strategy on the Microstructure and Mechanical Properties of Inconel 625 Superalloy Manufactured by Laser Direct Energy Deposition

Author:

Nam Hyunji,Jin Qing-Ye,Park Jiyoung,Lee Wookjin

Abstract

This study aimed to investigate the effect of process parameters on the microstructure and mechanical properties of Inconel 625 alloy manufactured by direct energy deposition process. The Inconel 625 samples were produced by varying the laser scanning speeds from 720 - 960 mm/min while maintaining the same the laser energy volume density. The microstructure and mechanical properties of the produced samples were evaluated, and their dimensional accuracy and mechanical properties were also analyzed in terms of the laser scanning strategy. Microstructural observations at the same energy density revealed a dendrite substructure near the laser melt pool boundaries, indicating that the dendritic microstructure was primarily formed at the beginning of the solidification of each laser bead. When the solidification further progressed into the melt pool, solidification cell substructures became dominant regardless of the laser scanning speed. The size of the solidification cell and the dendrite structure were nearly unchanged as laser scanning speed increased. This suggests that changing the laser scanning speed while maintaining the volumetric energy density does not significantly alter the solidification rates of the Inconel 625. As a consequence of the similar cell sizes, the samples produced with different laser scanning speed led to similar mechanical properties. When samples produced with two different scanning strategies, of unidirectional and 90o rotation, were compared, a better dimensional accuracy was obtained with the 90o rotation strategy, compared to that obtained with the unidirectional approach. Comparisons of mechanical properties obtained along different directions with the different laser scanning strategies revealed that the Inconel 625 produced by the laser direct energy deposition had pronounced anisotropic mechanical properties, and was the highest in strength but the lowest in maximum elongation along the laser scanning direction.

Funder

Ministry of Education

National Research Foundation of Korea

Ministry of Trade, Industry and Energy

Korea Institute for Advancement of Technology

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3