The Effect of the Surface Energy of Water Glass on the Fluidity of Sand

Author:

Bae Min A,Lee Man Sig,Baek Jae Ho

Abstract

In recent years, the metal casting industry has sought to meet ever more stringent environmental standards. Inorganic binders based on silicate chemistry have many advantages with respect to environmental issues, but often suffer from reduced strength, burn-on and poor water-resistance. In particular, when sand is mixed with a water glass based inorganic binder, it adversely affects fluidity. In this study, a Powder flow test (PFT) analysis was conducted to confirm the effect of the surface tension of water glass on mixed sand. Certain additives were selected as surfactants to lower the surface tension of the water glass. The characteristics of the samples were measured using the PFT. A correlation between the surface tension of the water glass and the fluidity of the mixed sand was established. We then evaluated the effect of the inorganic binder on core strength. Using the surfactants, the fluidity of the mixed sand increased by 66%. However, strength and water resistance were reduced by approximately 45%. As a result, it was found that when 1.5% of surfactant was added, the resulting fluidity and humidity strength characteristics produced a mixed sand with good properties. Water glass with improved fluidity can produce a high quality core and mold. Finally, we used a practical application prove that an inorganic binder can replace organic binders in foundry cores.

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3