Flexible Transparent Planar Heater Comprising ZnO/Cu/Al2O3

Author:

Kim Heechang,Choi Dooho

Abstract

In this study, we fabricated transparent heaters composed of an ultrathin Cu-layer heating element sandwiched between a ZnO underlayer and an Al2O3 overlayer. With the Cu layer thickness fixed at 8.5 nm, the thicknesses of the ZnO and Al2O3 layers were independently varied to reach the optimum antireflecting condition (maximum transmittance of 88.3% and average visible light transmittance of 79.8% were achieved). The sheet resistances for the ZnO/Cu/Al2O3 heaters can be varied by simply modulating the Cu layer thicknesses. In order to assess the flexibility of the transparent heaters, we constructed a ZnO/Cu/Al2O3 structure on flexible polyimide substrates, and the thermal, electrical, optical and mechanical characteristics were evaluated. Because of the planar heating element of the Cu layer, the thermal response was found to be extremely high, i.e., less than 10 s were required to reach 90% of the target temperatures. Once the target temperatures were reached, the heater temperatures were highly stable with no degradation of electrical and optical properties. Furthermore, the heating capability was maintained under severe mechanical deformation, e.g., at a bending radius of 4 mm. The structure also exhibited highly sustainable optoelectronic properties under repetitive mechanical deformation, confirming the potential for commercialization. Finally, we demonstrated that ZnO/Cu/Al2O3 rolled around a human finger exhibited highly uniform heating characteristics, rendering the heaters suitable for wearable, healthcare electronics.

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3