Development of Alternative Reductant using Biomass for Reducing CO<sub>2</sub> in Ironmaking Process

Author:

Kim Ga Eon,Oh Han Sang,Lee Jong Hyup,Park Young Joo,Lee Yu Bin,Kwon Jae Hong,Kim Byong Chul

Abstract

Technologies to reduce CO<sub>2</sub> emissions in the steel industry have been actively developed since the early 1990s in order to deal with global climate change. In particular, the utilization of various types of biomass including wood, bamboo, grass, food and agricultural by-product are being attempted as carbon neutral fuels in the blast furnace process. In this study, an alternative reducing agent for coke and pulverized coal using biomass was developed and the effect on blast furnace performance and CO<sub>2</sub> reduction was evaluated. The first investigation was whether a burden material made of torrefied biomass mixed with iron ore and coal (Iron-bearing Biomass Coke, IBC) could be used as a substitute for coke in the form of a carbonized briquette. In addition, a method of mixing torrefied biomass with pulverized coal (Bio-PC) to inject through tuyere in a blast furnace was examined. As a result, when coke was replaced with 10% of IBC, the reducibility of the sintered ore was improved in association with an increased CO gas utilization ratio, hence CO<sub>2</sub> emissions decreased by 2.3%. Furthermore, the combustion efficiency of Bio-PC mixed with 10% of torrefied biomass was improved by 13.2%, thus, the amount of CO<sub>2</sub> emissions was calculated to decrease by 4%. These results suggest that the possibility of using IBC and Bio-PC in blast furnaces, as they could effectively reduce CO<sub>2</sub> emissions in the ironmaking process.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Ministry of Trade, Industry and Energy

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3