Effect of Ga on the Morphology of SnO<sub>2</sub> Nano/Micro-Crystals Grown by a Thermal Evaporation Method

Author:

Lee Geun-Hyoung

Abstract

SnO<sub>2</sub> nano/micro-crystals with different morphologies were fabricated by the thermal evaporation of SnO<sub>2</sub> powders mixed with Ga<sub>2</sub>O<sub>3</sub> powder. The synthesis process was performed at 1300℃ in air. X-ray diffraction (XRD) analysis, energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to examine the morphology, microstructure, elemental composition and chemical property of the as-synthesized products. X-ray diffraction analysis revealed that the products were SnO<sub>2</sub> with a tetragonal rutile crystal structure. From the Fourier transform infrared spectra of the products, Sn-O stretching mode was observed, which confirmed the formation of SnO<sub>2</sub>. Scanning electron microscopic analysis clearly showed that the morphology of the SnO<sub>2</sub> crystals was significantly affected by the addition of Ga<sub>2</sub>O<sub>3</sub> to SnO<sub>2</sub> source powder. SnO<sub>2</sub> crystals with a belt-like morphology were grown when the source powder without Ga<sub>2</sub>O<sub>3</sub> powder was used. Rod-like SnO<sub>2</sub> crystals were grown by using SnO<sub>2</sub> powder mixed with Ga<sub>2</sub>O<sub>3</sub> powder as the source powder. When the amount of Ga<sub>2</sub>O<sub>3</sub> mixed in the source powder was increased, the morphology of the SnO<sub>2</sub> crystals changed from rod to tube. Energy dispersive X-ray analysis indicated that the inner core of the tube-like crystals was composed of Snrich metastable phase. No catalytic particles were observed at the tips of the SnO<sub>2</sub> nano/micro-crystals, suggesting that the growth process occurred by vapor-solid growth mechanism.

Publisher

The Korean Institute of Metals and Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3