Microwave Absorption Characteristics of M2+, 3+ (M = Mn3+, Zn2+, Ni2+)-substituted Sr3Co2Fe24O41 Hexaferrite Composites

Author:

Heo Jae-Hee,Kang Young-Min

Abstract

Mn, Zn, Ni-substituted Z-type hexaferrites, Sr3Co2Fe24O41 (Sr3Co2Fe24-xMnxO41, Sr3Co2-yZnyFe24O41, Sr3Co1-zNizZnFe24O41), were prepared by sol-gel synthesis processes and their high-frequency magnetic, dielectric and electromagnetic (EM) wave absorption characteristics were investigated. Substituting Mn for Fe by x = 0.5 maintained the single-phase Z phase while shifting the μ' , μ″ spectra towards lower frequencies. Substituting Zn for Co by y = 1.0 resulted in the single-phase Z phase and effectively shifted the μ' , μ″ spectra towards lower frequencies. Additionally, substituting Ni by z = 0.5, 1.0 gradually shifted the μ' , μ″ spectra towards higher frequencies. The Sr3Co2Fe24O41 with a single Z-type hexaferrite phase and epoxy (10 wt.%) composite showed strong ferromagnetic resonance (FMR) at 3.05 GHz and exhibited primary and secondary strong EM wave absorption characteristics at the thicknesses where impedance matching occurred near the FMR frequency and at frequencies higher than this. Substitution of Mn and Zn tended to decrease the FMR frequency, while substitution of Ni tended to increase it. The samples with substituted compositions also showed changes in the primary and secondary strong EM wave absorption frequency regions, depending on the FMR frequency changes. They demonstrated excellent EM wave absorption performance with the absolute value of the minimum reflection loss (RLmin) ranging from 42 to 58 dB. The FMR-tunable Z-type hexaferrite is a promising EM wave absorption material that can modulate EM wave absorption characteristics by cation substitution in in L-S-band (1~4 GHz) and X-band (8~12 GHz) ranges.

Funder

Ministry of Science and ICT

National Research Foundation of Korea

Ministry of Education

Korea Basic Science Institute

Publisher

The Korean Institute of Metals and Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3