Glycothermally Synthesized Self-aggregated ZnS Spherical Particles for Methyl Orange Photodecomposition

Author:

Park Sang-Jun,Song Jeong-Hwan

Abstract

Using ethylene glycol (C2H6O2) as the solvent, ZnS particles were synthesized in high yield at a relatively low temperature of 125 oC via the glycothermal method. We report a facile method for preparing spherical self-aggregated ZnS particles from ZnS nanocrystals, using zinc acetate as the Zn2+ source and thiourea as a sulfur source, without mineralization or other agents. The crystal phase structure, morphology, size, surface chemical composition, and optical properties of the self-aggregated ZnS particles were characterized using XRD, FE-SEM, TEM, XPS, BET, and UV-Vis absorption. The ZnS particles had a cubic phase zinc blende structure without any other impurities. The average crystallite size of the synthesized primary nanocrystal, estimated from XRD peak width and TEM images, was nearly 4 nm. FE-SEM images showed that all of the ZnS consisted of self-aggregated particles with a spherical morphology and a size of approximately 0.2 µm~0.5 µm, and contained many tiny primary nanocrystals. The prepared ZnS exhibited strong photoabsorption in the UV region. The optical band gap decreased from 3.85 eV to 3.62 eV as the glycothermal reaction temperature was increased, due to improvement in particle size and crystallization. The effects of the glycothermal reaction temperature on the photocatalytic activity of the synthesized selfaggregated ZnS particles were investigated by the photodecomposition of methyl orange (MO) dye under UV illumination (λ = 365 nm). The prepared ZnS exhibited excellent photocatalytic degradation with increasing reaction temperature, of 125 oC (5%), 150 oC (10%), 175 oC (60%), and 200 oC (90%) after irradiation for 60 min. It was found that the ZnS particle prepared at 200 oC achieved the highest photocatalytic degradation, with nearly 100% MO decomposition after 90 min, by various photogenerated radical scavengers.

Funder

PaiChai University

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3