Abstract
ZrB2 is considered a candidate material for ultra-high temperature ceramics because of its high thermal conductivity, high melting point, and low coefficient of thermal expansion. Despite these attractive properties, ZrB2 applications are limited by its low fracture toughness below the brittle-ductile transition temperature. To improve its ductile properties, the approach universally utilized has been to add a second material to form composites, and to fabricate nanostructured materials. In this study a dense nanostructured ZrB2-Al2O3 composite was rapidly sintered using the pulsed current activated heating (PCAH) method within 3 min in one step, from mechanically synthesized powders of ZrB2 and Al2O3. Consolidation was accomplished using an effective combination of current and mechanical pressure. A highly dense ZrB2- Al2O3 composite with a relative density of up to 97.4% was fabricated using the simultaneous application of 70 MPa pressure and a pulsed current. The fracture toughness and hardness of the ZrB2-Al2O3 composite were 3.9 MPa.m1/2 and 1917 kg/mm2, respectively. The fracture toughness of the composite was higher than that of monolithic ZrB2.
Publisher
The Korean Institute of Metals and Materials
Subject
Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials