Effects of Cr Carbides Formation on the High Temperature Creep Property of Alloy 690 for Steam Generator Tube Material

Author:

Kim Hyung Kyu,Hong Seokmin,Kim Jongmin,Kim Min-Chul,Lee Young-Kook

Abstract

The creep properties of Alloy 690, used as a steam generator tube material in nuclear power plants, were evaluated at 650°C, 750°C, and 850°C. The parameters of creep life prediction models were derived using the Larson-Miller (LM), Manson-Haferd (MH), and Orr-Sherby-Dorn (OSD) models, to use as mechanical properties under a virtual severe accident condition like station black out (SBO). The yield strength (YS) and creep property of Alloy 690 were compared with those of Alloy 600, and the effects of the precipitation behavior of Cr carbides on creep properties were analyzed. The YS of Alloy 600 decreased rapidly above the temperature of 750°C, but the YS of Alloy 690 decreased linearly up to the temperature of 850°C because of the formation of M23C6 carbides. The creep stress exponent (n) of Alloy 690 was between 5 and 6, and this indicated that dislocation creep was the major creep mechanism at the test temperatures. The results of creep tests were well matched with the LM, MH, and OSD models for Alloy 690, and there were no significant differences in accuracy between the models. The stress-rupture test results of Alloy 600 and Alloy 690 using the LM model showed that the decrease in creep strength with rupture time of Alloy 690 was steeper than that of Alloy 600 at high temperatures. This indicated that Alloy 690 was more susceptible to creep degradation under longterm creep conditions. The precipitation of Cr carbides in Alloy 690 increased YS, benefitting creep properties for short-term creep. However, the Cr carbides coarsened significantly under loading conditions at high temperature, and this deteriorated the creep properties for long-term creep.

Funder

National Research Foundation of Korea

Ministry of Science, ICT and Future Planning

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Reference41 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3