Effects of Thiourea Stripping of 14 Karat White Gold Alloys With the Addition of SDS Surfactant

Author:

Kim Ikgyu,Kim Kwangbae,Song Ohsung

Abstract

A stripping solution with thiourea, iron(III) sulfate, and sodium dodecyl sulfate(SDS) was employed to strip Ni-based 14 karat white gold alloys, and the formation of the NiS byproduct and elimination of passivation were investigated in the presence of 0.0-0.2 g/L SDS. White gold alloy samples with a flat shape were cast by gypsum investment and were stripped using the prepared stripping solution. Subsequently, the surface morphology, elimination of the passivation layer, weight loss, microstructure, elemental composition, and electrochemical properties of the samples were analyzed by optical microscopy, Raman spectroscopy, precision scale, scanning electron microscopy, energy dispersive X-ray spectroscopy, and linear sweep voltammetry, respectively. It was found that passivation layers of the as-cast samples were removed by the suggested stripping solution. Upon the addition of SDS, the stripped sample showed a bright silver color without NiS, while the sample showed a dark tarnished appearance due to NiS formation without SDS. The weight loss ratio decreased with increasing SDS content and stabilized at 0.2 % for SDS concentrations exceeding 0.15 g/L, and the sample showed a uniformly etched microstructure. EDS results showed that NiS was formed without SDS addition, while linear sweep voltammetry results indicated that NiS formation was restrained upon SDS addition because SDS suppresses the formation of formamidine disulfide from thiourea. Thus, the suggested thiourea stripping with SDS addition was successfully applied to Ni-based 14 karat white gold alloys.

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3