OPTIMIZING ZERO BETA PORTFOLIOS: A COMPARATIVE ANALYSIS OF ROBUST AND NORMAL PORTFOLIO METHODOLOGIES

Author:

Gomes Thiago Petchak

Abstract

When building a “zero beta portfolio”, neglecting the parameters’ uncertainty may harm the investor. This paper analyzes a way to build a zero beta portfolio that does not consider only the parameter points estimates, but also the beta and the expected return uncertainties. The stocks’ betas and their uncertainties are calculated using the Kalman Filter and the stocks’ expected returns and their uncertainties are calculated from analysts’ price and dividends estimations. The study applied two different methodologies to build a zero beta portfolio: one that maximizes the ratio between the expected return by the uncertainties of the parameters, called long-short robust portfolio; and another that simply maximizes the expected return, neglecting the uncertainties of the parameters, called as long-short normal portfolio. During the period analyzed, 2015-2022, compared to the long-short normal portfolio, the long-short robust portfolio had a higher realized return and a significantly lower standard deviation.

Publisher

South Florida Publishing LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3