Thermal and stress-strain state of friction pairs in ventilated disc brakes of lightweight vehicles

Author:

Dykha O.,Holenko K.,Padgurskas J.,Babak O.

Abstract

The work is dedicated to the thermal behavior and stress-strain state of ventilated disc brakes installed in the lightweight vehicles (scooters, electric bikes, ATVs, etc.) using ANSYS environment in various experiment modes. Modeling of the temperature distribution in the rotor (disc) and the corresponding brake pads is determined taking into account a number of factors and input parameters during the braking operation: the amount of rotation speed, the gap between the pads and the disc, the speed of load application, thermal expansion, etc. Numerical modeling of the transient thermal and the stress fields in the area of contact between the pads and the rotor is carried out by the method of sequential thermostructural connection of the intermediate calculation states of the brake model in the ANSYS Coupled Field Transient environment. For a comprehensive assessment of brake behavior, our research considers two load approaches: constant long-term (20 s) with an influence factor in the form of thermal expansion as a result of contact pair friction; linear load from the pads on the disс with a corresponding increase in pressure up to the moment when the rotation of the system is blocked. Our research presents an assessment of the rotor ventilation channels influence on the nature of the contact spot with the brake pads (open far-field contact, sliding contact, sticking contact, etc.). In addition, it is demonstrated that despite the linear increase in pads pressure on the rotor, the graphs of temperatures, volume (thermal expansion) and stresses are of parabolic character with a disproportionate increase in indicators. Such a result forces us to come to the conclusion that it is not possible to predict the behavior of the brakes based on the analysis during a short period of time of the experiment - conducting long-term analytical studies is extremely important in the case of brakes

Publisher

Khmelnytskyi National University

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3