Microgeometrical characteristics of electrospark coatings in the initial state

Author:

Tokaruk V., ,Mikosianchyk O.,Mnatsakanov R.,Rohozhyna N., , ,

Abstract

Microgeometric parameters of the effect of discrete electrospark coatings on their stress-strain state have been evaluated for the case of using a combined technology of modification of duralumin D16, which includes the technique of electrospark alloying with subsequent surface plastic deformation of coatings formed. According to the profilograms of discrete electrical coatings, the curves of the bearing surface (Abbott curves) were constructed and the parameters that drastically affect tribological characteristics of the coatings were determined. It was shown that modification of duralumin D16 with a combined electrospark coating VK-8 + Cu reduces the arithmetic mean height of peaks in the top portion of the profile by 4.4 and 3.2 times, doubles the arithmetic mean depth of the profile core irregularities, increases the arithmetic mean depth of profile valleys by 1.8 and 1.1 times, in comparison with electrospark coatings from hard alloy VK-8 and copper, respectively. These parameters help to reduce the period of running-in of the contact surfaces strengthened by the combined electrospark coating VK-8 + Cu, increase their bearing capacity, contact durability and specific oil consumption. On the basis of the finite element analysis method of the Nastran software complex, a model of the stress-strain state of a discrete coating/base was designed and distribution of the main normal stresses was determined for a coating compactness of 60% under a normal load of 600 N. The performed modeling revealed advantages of a combined technology for formation of wear-resistant electrospark coatings, which consists in turning residual tensile stresses into compressive ones. When modifying the duralumin D16 with a VK-8 + Cu coating, on the coating surface and in the base material, compressive stresses (-93 MPa and -20 MPa, respectively) are formed, which provides a decrease in wear of the modified surface by two times compared to unmodified duralumin D16.

Publisher

Khmelnytskyi National University

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3