Modeling and Forecasting COVID-19 Incidence Rates: A Time Series Analysis of Acute Respiratory Infections (ARI) in France Since Surveillance Initiation

Author:

TAYLAN SELAMLAR Hanife1ORCID

Affiliation:

1. DOKUZ EYLÜL ÜNİVERSİTESİ, FEN FAKÜLTESİ

Abstract

Objective: This study aims to address the challenges of planning and managing the trajectory of the COVID-19 pandemic by evaluating the predictive abilities of three distinct forecasting models. The primary focus is on the ATA univariate forecasting method, ARIMA (AutoRegressive Integrated Moving Average), and ETS (Error-Trend-Seasonality) models. These models are applied to a meticulously collected dataset comprising Acute Respiratory Infections (ARI) incidence rates in France, systematically collected since the initiation of surveillance. Methods: The purpose of the study was to conduct a comprehensive evaluation of forecasting models using the selected dataset to achieve its objective. The focus was on comparing the accuracy and performance of ATA univariate forecasting, ARIMA, and ETS models in predicting COVID-19 incidence rates. Additionally, the study incorporated a combination approach proven to be effective in enhancing forecasting performance. Results: According to the results obtained regarding forecast performance, the univariate models indicate that the ATA method exhibits the highest performance, while observations reveal that combinations of ATA and ARIMA methods enhance forecast accuracy. Conclusions: In summary, the most accurate approach for forecasting future Covid-19 incidence rates, specifically those derived from Acute Respiratory Infections (ARI), has been a combination of the high-accuracy methods ATA and ARIMA. These findings enhance our understanding of the trajectory of the pandemic, providing a foundation for strategic planning and effective management.

Publisher

Balikesir Medical Journal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3