The Geometries of Stable Isotopes in Tooth Enamel and Their Radiation Cycles and Archaeological Significance

Author:

MERGEN Atiye Bahar1ORCID,YILMAZ Mücahit2ORCID,KARABULUT Ezman1ORCID,ÇELİK Fatih Ahmet1ORCID

Affiliation:

1. BITLIS EREN UNIVERSITY

2. Fırat Üniversitesi

Abstract

Archaeologically, the elements in the tooth enamel and their isotopes provide a lot of information about the related period, such as the way of life and nutrition culture. In this study, it was determined how the durability or brittleness of tooth enamel varies with the presence of H, C, N and S elements, which are mostly detected in tooth enamel, and their most stable isotopes, D (deuterium), 13C, 15N, 34S elements. These elements were moved inside and on the surface of the hydroxyapatite (HAp) crystal, which is the most abundant in tooth enamel and the cornerstone of enamel. At the end of the study, it was revealed that Nitrogen (N) and Sulphur (S) elements, especially Ca atoms that ensure the durability of the HAp crystal, and Oxygen atoms make bonds that prevent electronic charge sharing. In addition, this type of bonding (in geometries holding many Ca atoms) increase the fragility as the number of Ca-O bonds decrease. At the same time, such bindings create difficulties in determining the isotopes of the relevant elements. C bonding, on the other hand, provides a strong stretching action as it provides a double bond with the Oxygen atom, so the isotopic state of the carbon atom easily shows itself. The same situation was observed for element H and its isotope D. These findings better explain the brittleness of the teeth of ancient people, especially those who were fed marine life. Keywords: Carbon, Hydrogen, Hydroxyapatite, Nitrogen, Sulphur

Publisher

International Journal of Innovative Engineering Applications

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3