Abstract
The current study is concerned analytical solutions of the nonlinear potential KdV equation. Here, we implemented the Jacobi elliptic function method for soliton, hyperbolic and periodic solutions. Moreover, we illustrate our results with some graphs.
Publisher
International Journal of Innovative Engineering Applications
Subject
Applied Mathematics,General Mathematics
Reference10 articles.
1. Referans 1 Boussinesq, J. (1871). Théorie de I’intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire, Comptes Rendus, 72, 755-759.
2. Referans 2 Korteweg, D.J.; de Vries G. (1895). On the change of from long waves advancing in a rectangular channel and on a new type of long stationary wave, Phil. Mag. 39(5), 422-443.
3. Referans 3 Constantin, A.; Henry, D. (2009). Solitons and Tsunamis, Z. Naturforsch, 64a, 65-68.
4. Referans4 Pandir, Y; Yildirim A. (2018). Analytical approach for the fractional differential equations by using the extended tanh method, Waves in Random and Complex Media, 3, 399-410.
5. Referans 5 Ghosh, A.; Maitra, S. (2021). The first integralmethod and some nonlinear models, Comput. Appl. Math., 40(79), 1-16.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. NUMERICAL SOLUTIONS TO THE STOCHASTIC SYSTEMS WITH FRACTIONAL OPERATORS;International Journal of Innovative Engineering Applications;2024-06-29