PVA/WHEY PROTEIN NANOFIBER-COATED PP MELT BLOWN INTEGRATED WITH PICKERING EMULSION OF CITRAL STABILIZED FOR POTENTIAL MEDICAL APPLICATIONS

Author:

Parın Fatma Nur1ORCID,Yeşilyurt Ayşenur2ORCID,Parın Uğur3ORCID

Affiliation:

1. BURSA TECHNICAL UNIVERSITY

2. BURSA TEKNİK ÜNİVERSİTESİ, MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ

3. AYDIN ADNAN MENDERES ÜNİVERSİTESİ, VETERİNER FAKÜLTESİ, KLİNİK ÖNCESİ BİLİMLERİ BÖLÜMÜ, VETERİNERLİK MİKROBİYOLOJİSİ ANABİLİM DALI

Abstract

As an antibacterial agent with pleasant fragrance, citral (CIT) indicates hydrophobic character, and therefore has low water solubility. In this study, Pickering emulsions were formed and polyvinyl alcohol (PVA)/whey protein hydrophilic nanofibers were coated on PP melt blown non-woven surfaces by electrospinning method. In this context, hydrophobic citral essential oil is stabilized with β-cyclodextrin (β-CD) in the electrospinning process. PVA and whey protein polymer blend were used as nanofiber matrices. The morphological, physical, and thermal properties of the β-CD/citral complexes were investigated in PVA/whey protein nanofiber-coated PP non-wovens at various β-CD levels (1:2, 1:4 and 1:6). Furthermore, zone inhibition procedure was performed to evaluate antibacterial activity of the samples against Gram (+) (Staphylococcus aureus ATCC® 25923) and Gram (-) (Escherichia coli ATCC® 25922, and Pseudomonas aeruginosa ATCC® 27853) bacteria. The morphology of fibers showed that all obtained nanofiber-coated PP surfaces were in the range with 216 - 330 nm average fiber diameter. Fourier Transform Infrared (FT-IR) and thermal gravimetric analysis (TGA) thermograms revealed that citrals were successfully integrated into the bio-based nanofibers. As the amount of citral increased (i.e., the β-CD/citral increased), the thermal resistance of bio-based nanofiber coated PP surfaces increased. Antibacterial activity indicated the citral-loaded nanofiber-coated PP surfaces were most effective against Escherichia coli, while none of the samples have antibacterial activity against Pseudomonas aeruginosa. Overall, the results displayed that the fabricated PVA/whey protein nanofiber-coated PP samples integrated with Pickering emulsion of citral stabilized have promising wound dressing applications.

Funder

This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Publisher

International Journal of Innovative Engineering Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3