Effect of Polymerizable Emulsifiers on the Properties of Polyacrylate Latexes and the Relative Waterborne Inks

Author:

Chen Yongming1,Li Xiaoyu1,Wang Haiqiao1

Affiliation:

1. Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

Polyacrylate latexes made from non-polymerizable emulsifiers and their inks typically suffer from poor ethanol resistance stability and low adhesion on biaxially oriented polypropylene (BOPP) and polyethylene (PE) films. In this contribution, a composite emulsifier system containing a polymerizable anionic and a polymerizable non-ionic emulsifier was used to synthesize core-shell polyacrylate latexes. Additionally, a control latex was also prepared using a traditional emulsifier TX-30 to replace the polymerizable non-ionice mulsifier in the above composite emulsifiers. The effect of the polymerizable emulsifier on ethanol resistance, Ca 2+ resistance stability, and adhesion on PE and BOPP films of the latexes and the inks, and water resistance of the latex films and ink films were studied. The results show that, when compared with the control latex, the one made from double polymerizable compound emulsifier system and its ink demonstrates better ethanol resistance, higher stability of calcium ions and higher adhesion on BOPP and PE. When the ratio of anionic emulsifier to non-ionic emulsifier is 1.5/1 and the total dosage is 2.5 wt%, the latex showed the best comprehensive performance. The calcium ion resistance stability of the latex increased from 5% of the control latex to 25%. Accordingly, the adhesion of yellow ink on BOPP film increased from 92% of the ink based on the control latex to 99% and increased from 99% to 100% on PE film. The adhesion of blue ink on BOPP film increased from 92% to 99%, and from 99% to 100% on PE film. These results indicate that the fully polymerizable emulsifiers can effectively improve the properties of latex.

Publisher

Society for Imaging Science & Technology

Subject

Computer Science Applications,Atomic and Molecular Physics, and Optics,General Chemistry,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3