Detection of Air-to-Air Flying Targets against Sky–ground Joint Background

Author:

Yan Junhua12,Zhang Kun12,Zhang Yin21,Cai Xuyang12,Qi Jingchun12,Fan Junjie12

Affiliation:

1. Key Laboratory of Space Photoelectric Detection and Perception (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, Jiangsu 211106, China

2. Nanjing University of Aeronautics and Astronautics, College of Astronautics, Nanjing, Jiangsu 211106, China

Abstract

There are three critical problems that need to be tackled in target detection when both the target and the photodetector platform are in flight. First, the background is a sky–ground joint background. Second, the background motion is slow when detecting targets from a long distance, and the targets are small, lacking shape information as well as large in number. Third, when approaching the target, the photodetector platform follows the target in violent movements and the background moves fast. This article is comprised of three parts. The first part is the sky–ground joint background separation algorithm, which extracts the boundary between the sky background and the ground background based on their different characteristics. The second part is the algorithm for the detection of small flying targets against the slow moving background (DSFT-SMB), where the double Gaussian background model is used to extract the target pixel points, then the missed targets are supplemented by correlating target trajectories, and the false alarm targets are filtered out using trajectory features. The third part is the algorithm for the detection of flying targets against the fast moving background (DFT-FMB), where the spectral residual model of target is used to extract the target pixel points for the target feature point optical flow, then the speed of target feature point optical flow is calculated in the sky background and the ground background respectively, thereby targets are detected using the density clustering algorithm. Experimental results show that the proposed algorithms exhibit excellent detection performance, with the recall rate higher than 94%, the precision rate higher than 84%, and the F-measure higher than 89% in the DSFT-SMB, and the recall rate higher than 77%, the precision rate higher than 55%, and the F-measure higher than 65% in the DFT-FMB.

Publisher

Society for Imaging Science & Technology

Subject

Computer Science Applications,Atomic and Molecular Physics, and Optics,General Chemistry,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3