Content Fidelity of Deep Learning Methods for Clipping and Over-exposure Correction

Author:

Abebe Mekides Assefa

Abstract

Exposure problems, due to standard camera sensor limitations, often lead to image quality degradations such as loss of details and change in color appearance. The quality degradations further hiders the performances of imaging and computer vision applications. Therefore, the reconstruction and enhancement of uderand over-exposed images is essential for various applications. Accordingly, an increasing number of conventional and deep learning reconstruction approaches have been introduced in recent years. Most conventional methods follow color imaging pipeline, which strongly emphasize on the reconstructed color and content accuracy. The deep learning (DL) approaches have conversely shown stronger capability on recovering lost details. However, the design of most DL architectures and objective functions don’t take color fidelity into consideration and, hence, the analysis of existing DL methods with respect to color and content fidelity will be pertinent. Accordingly, this work presents performance evaluation and results of recent DL based overexposure reconstruction solutions. For the evaluation, various datasets from related research domains were merged and two generative adversarial networks (GAN) based models were additionally adopted for tone mapping application scenario. Overall results show various limitations, mainly for severely over-exposed contents, and a promising potential for DL approaches, GAN, to reconstruct details and appearance.

Publisher

Society for Imaging Science & Technology

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 4K-Resolution Photo Exposure Correction at 125 FPS with ~8K Parameters;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3