HUMAN BEHAVIOR PREDICTION FOR CITYSCAPE IMAGES USING MULTIMODAL DEEP LEARNING
Author:
Affiliation:
1. KOZO KEIKAKU ENGINEERING Inc
2. Dept. of Architecture and Urban Design, Ritsumeikan Univ.
Publisher
Architectural Institute of Japan
Subject
General Medicine,General Chemistry
Link
https://www.jstage.jst.go.jp/article/aija/87/798/87_1602/_pdf
Reference17 articles.
1. 1) Satoshi YAMADA,Kotaro ONO:Development and Verification of AI that Generates Designs with Deep Learning-Street Names City Landscapes and Desire/No Desire Or Degree of Desire to Visit-,Journal of Achitecture and Planning(Transactions of AIJ),Vol.84,No.759,pp.1323-1331,2019.5(in Japanese) 山田悟史, 大野耕太郎:Deep Learning を用いた印象評価推定 AI の作成と検証-街並みと建築物外観の画像生成を対象に-, 日本建築学会計画系論文集, 第 84 巻, 第 759 号,pp1323- 1331,2019,5
2. 2) Noda, K.,Arie,H.,Suga,Y.and Ogata,T.: Multimodal integration learning of robot behavior using deep neural networks, Robotics and Autonomous Systems, Vol.62, No. 6,pp721-736,2014,3
3. 3) Ryan Kiros, Ruslan Salakhutdinov, Richard S. Zemel:Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, arXiv:1411.2539,2014,11
4. 4) Lun Liu, Elisabete A. Silva, Chunyang Wu, Hui Wang: A machine learning-based method for the large-scale evaluation of the qualities of the urban environment-,Computers,Environment and Urban Systems, Vol65, pp.113-125, 2017.6
5. 5) Stephen Law, Yao Shen, Chanuki Seresinhe : An application of convolutional neural network in street image classification-the case study of london-,ACM GeoAI'17 Proceedings of the 1st Workshop on Artificial Intelligence and Deep Learning for Geographic knowledge Discovery, pp.5-9, 2017.11
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. STUDY ON THE APPLICABILITY OF DEEP LEARNING-BASED REGION EXTRACTION METHOD IN RIVER LANDSCAPE;Journal of Environmental Engineering (Transactions of AIJ);2024-09-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3