Author:
Downey Rod,Hirschfeldt Denis R.,Nies André,Terwijn Sebastiaan A.
Abstract
We report on some recent work centered on attempts to understand when one set is more random than another. We look at various methods of calibration by initial segment complexity, such as those introduced by Solovay [125], Downey, Hirschfeldt, and Nies [39], Downey, Hirschfeldt, and LaForte [36], and Downey [31]; as well as other methods such as lowness notions of Kučera and Terwijn [71], Terwijn and Zambella [133], Nies [101, 100], and Downey, Griffiths, and Reid [34]; higher level randomness notions going back to the work of Kurtz [73], Kautz [61], and Solovay [125]; and other calibrations of randomness based on definitions along the lines of Schnorr [117].These notions have complex interrelationships, and connections to classical notions from computability theory such as relative computability and enumerability. Computability figures in obvious ways in definitions of effective randomness, but there are also applications of notions related to randomness in computability theory. For instance, an exciting by-product of the program we describe is a more-or-less naturalrequirement-freesolution to Post's Problem, much along the lines of the Dekker deficiency set.
Publisher
Cambridge University Press (CUP)
Reference145 articles.
1. Complexity and randomness;Terwijn;Rendiconti del Seminario Matematico di Torino,2004
2. A generalization of Chaitin's halting probability $\Omega$ and halting self-similar sets
3. van Lambalgen M. , Random sequences, PhD Dissertation, University of Amsterdam, 1987.
4. Computational randomness and lowness
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献