Author:
Lange Martin,Lutz Carsten
Abstract
AbstractIn 1984. Danecki proved that satisfiability in IPDL, i.e., Propositional Dynamic Logic (PDL) extended with an intersection operator on programs, is decidabie in deterministic double exponential time. Since then, the exact complexity of IPDL has remained an open problem: the best known lower bound was the ExpTime one stemming from plain PDL until, in 2004. the first author established ExpSpace-hardness. In this paper, we finally close the gap and prove that IPDL is hard for 2-ExpTime. thus 2-ExpTime-complete. We then sharpen our lower bound, showing that it even applies to IPDL without the test operator interpreted on tree structures.
Publisher
Cambridge University Press (CUP)
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献