Author:
Fokina E.,Knight J. F.,Melnikov A.,Quinn S. M.,Safranski C.
Abstract
AbstractThe first main result isolates some conditions which fail for the class of graphs and hold for the class of Abelianp-groups, the class of Abelian torsion groups, and the special class of “rank-homogeneous” trees. We consider these conditions as a possible definition of what it means for a class of structures to have “Ulm type”. The result says that there can be no Turing computable embedding of a class not of Ulm type into one of Ulm type. We apply this result to show that there is no Turing computable embedding of the class of graphs into the class of “rank-homogeneous” trees. The second main result says that there is a Turing computable embedding of the class of rank-homogeneous trees into the class of torsion-free Abelian groups. The third main result says that there is a “rank-preserving” Turing computable embedding of the class of rank-homogeneous trees into the class of Boolean algebras. Using this result, we show that there is a computable Boolean algebra of Scott rank.
Publisher
Cambridge University Press (CUP)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献