Abstract
AbstractWe study the fragment of Peano arithmetic formalizing the induction principle for the class of decidable predicates, IΔ1. We show that IΔ1 is independent from the set of all true arithmetical Π2-sentences. Moreover, we establish the connections between this theory and some classes of oracle computable functions with restrictions on the allowed number of queries. We also obtain some conservation and independence results for parameter free and inference rule forms of Δ1-induction.An open problem formulated by J. Paris (see [4, 5]) is whether IΔ1 proves the corresponding least element principle for decidable predicates, LΔ1 (or, equivalently, the Σ1-collection principle BΣ1). We reduce this question to a purely computation-theoretic one.
Publisher
Cambridge University Press (CUP)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献