Weihrauch degrees, omniscience principles and weak computability

Author:

Brattka Vasco,Gherardi Guido

Abstract

AbstractIn this paper we study a reducibility that has been introduced by Klaus Weihrauch or, more precisely, a natural extension for multi-valued functions on represented spaces. We call the corresponding equivalence classes Weihrauch degrees and we show that the corresponding partial order induces a lower semi-lattice. It turns out that parallelization is a closure operator for this semi-lattice and that the parallelized Weihrauch degrees even form a lattice into which the Medvedev lattice and the Turing degrees can be embedded. The importance of Weihrauch degrees is based on the fact that multi-valued functions on represented spaces can be considered as realizers of mathematical theorems in a very natural way and studying the Weihrauch reductions between theorems in this sense means to ask which theorems can be transformed continuously or computably into each other. As crucial corner points of this classification scheme the limited principle of omniscience LPO, the lesser limited principle of omniscience LLPO and their parallelizations are studied. It is proved that parallelized LLPO is equivalent to Weak Kőnig's Lemma and hence to the Hahn–Banach Theorem in this new and very strong sense. We call a multi-valued function weakly computable if it is reducible to the Weihrauch degree of parallelized LLPO and we present a new proof, based on a computational version of Kleene's ternary logic, that the class of weakly computable operations is closed under composition. Moreover, weakly computable operations on computable metric spaces are characterized as operations that admit upper semi-computable compact-valued selectors and it is proved that any single-valued weakly computable operation is already computable in the ordinary sense.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference31 articles.

1. Computable Analysis

2. Mylatz Uwe , Vergleich unstetiger Funktionen: “Principle of Omniscience” und Vollständigkeit in der C–hierarchic, Ph.D. thesis, Faculty for Mathematics and Computer Science, University Hägen, Germany, 2006.

3. Effective Borel measurability and reducibility of functions

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Primitive recursive reverse mathematics;Annals of Pure and Applied Logic;2024-01

2. Algorithmically random series;Computability;2023-09-13

3. Banach’s theorem in higher-order reverse mathematics;Computability;2023-07-18

4. Algebraic properties of the first-order part of a problem;Annals of Pure and Applied Logic;2023-07

5. Instance reducibility and Weihrauch degrees;Logical Methods in Computer Science;2022-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3