Abstract
AbstractSome 40 years ago, Dana Scott proved that every countable Scott set is the standard system of a model of PA. Two decades later, Knight and Nadel extended his result to Scott sets of size ω1. Here, I show that assuming the Proper Forcing Axiom (PFA), every A-proper Scott set is the standard system of a model of PA. I define that a Scott set is proper if the quotient Boolean algebra /Fin is a proper partial order and A-proper if is additionally arithmetically closed. I also investigate the question of the existence of proper Scott sets.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献