On constructing completions

Author:

Crosilla Laura,Ishihara Hajime,Schuster Peter

Abstract

AbstractThe Dedekind cuts in an ordered set form a set in the sense of constructive Zermelo–Fraenkel set theory. We deduce this statement from the principle of refinement, which we distill before from the axiom of fullness. Together with exponentiation, refinement is equivalent to fullness. None of the defining properties of an ordering is needed, and only refinement for two–element coverings is used.In particular, the Dedekind reals form a set: whence we have also refined an earlier result by Aczel and Rathjen, who invoked the full form of fullness. To further generalise this, we look at Richman's method to complete an arbitrary metric space without sequences, which he designed to avoid countable choice. The completion of a separable metric space turns out to be a set even if the original space is a proper class: in particular, every complete separable metric space automatically is a set.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Der Satz von Hahn-Banach per Disjunktionselimination;Confluentes Mathematici;2019-08-27

2. Generalized geometric theories and set-generated classes;Mathematical Structures in Computer Science;2014-11-10

3. A generalized cut characterization of the fullness axiom in CZF;Logic Journal of IGPL;2012-07-02

4. Are There Enough Injective Sets?;Studia Logica;2012-06-12

5. Refinement is equivalent to Fullness;Mathematical Logic Quarterly;2010-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3