The modalμ-calculus hierarchy over restricted classes of transition systems

Author:

Alberucci Luca,Facchini Alessandro

Abstract

AbstractWe study the strictness of the modalμ-calculus hierarchy over some restricted classes of transition systems. First, we prove that over transitive systems the hierarchy collapses to the alternation-free fragment. In order to do this the finite model theorem for transitive transition systems is proved. Further, we verify that if symmetry is added to transitivity the hierarchy collapses to the purely modal fragment. Finally, we show that the hierarchy is strict over reflexive frames. By proving the finite model theorem for reflexive systems the same results holds for finite models.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference32 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complexity through Translations for Modal Logic with Recursion;Electronic Proceedings in Theoretical Computer Science;2022-09-20

2. The Alternation Hierarchy of the $$\mu $$-calculus over Weakly Transitive Frames;Logic, Language, Information, and Computation;2022

3. A Focus System for the Alternation-Free $$\mu $$-Calculus;Lecture Notes in Computer Science;2021

4. Fixed-point Elimination in the Intuitionistic Propositional Calculus;ACM Transactions on Computational Logic;2020-01-31

5. Free Heyting algebra endomorphisms: Ruitenburg’s Theorem and beyond;Mathematical Structures in Computer Science;2020-01-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3