Author:
Mckenzie Ralph,Monk J. Donald
Abstract
Abstract.Assume that all algebras are atomless. (1) Spind(A × B) = Spind(A) ∪ Spind(B). (2) Spind(Ai). Now suppose that κ and λ are infinite cardinals, with κ uncountable and regular and with κ < λ. (3) There is an atomless Boolean algebra A such that u(A) = κ and i(A) = λ. (4) If λ is also regular, then there is an atomless Boolean algebra A such that t(A) = s(A) = κ and α (A) = λ. All results are in ZFC, and answer some problems posed in Monk [01] and Monk [∞].
Publisher
Cambridge University Press (CUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献