Computability Theory and Differential Geometry

Author:

Soare Robert I.

Abstract

Abstract. LetMbe a smooth, compact manifold of dimensionn≥ 5 and sectional curvature ∣K∣ ≤ 1. Let Met(M) = Riem(M)/Diff(M) be the space of Riemannian metrics onMmodulo isometries. Nabutovsky and Weinberger studied the connected components of sublevel sets (and local minima) for certain functions on Met(M) such as the diameter. They showed that for every Turing machineTe,eϵ ω, there is a sequence (uniformly effective ine) of homologyn-sphereswhich are also hypersurfaces, such thatis diffeomorphic to the standardn-sphereSn(denoted)iffTehalts on inputk, and in this case the connected sum, so, andis associated with a local minimum of the diameter function on Met(M) whose depth is roughly equal to the settling time ae σe(k)ofTeon inputsy<k.At their request Soare constructed a particular infinite sequence {Ai}ϵωof c.e. sets so that for allithe settling time of the associated Turing machine forAidominates that forAi+1, even when the latter is composed with an arbitrary computable function. From this, Nabutovsky and Weinberger showed that the basins exhibit a “fractal” like behavior with extremely big basins, and very much smaller basins coming off them, and so on. This reveals what Nabutovsky and Weinberger describe in their paper on fractals as “the astonishing richness of the space of Riemannian metrics on a smooth manifold, up to reparametrization.” From the point of view of logic and computability, the Nabutovsky-Weinberger results are especially interesting because: (1) they use c.e. sets to prove structuralcomplexityof the geometry and topology, not merelyundecidabilityresults as in the word problem for groups, Hilbert's Tenth Problem, or most other applications; (2) they usenontrivialinformation about c.e. sets, the Soare sequence {Ai}iϵωabove, not merely Gödel's c.e. noncomputable set K of the 1930's; and (3)withoutusing computability theory there is no known proof that local minima exist even for simple manifolds like the torusT5(see §9.5).

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference57 articles.

1. An Introduction to the Theory of Groups

2. Algorithmic unsolvability of the triviality problem for multidimensional knots

3. Gromov-Hausdorff convergence of metric spaces

4. On algorithmic problems in effectively complete classes of groups;Adjan;Doklady Akademii Nauk SSSR,1958

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An arithmetic analysis of closed surfaces;Transactions of the American Mathematical Society;2024-01-18

2. Computing simplicial representatives of homotopy group elements;Journal of Applied and Computational Topology;2018-09-25

3. Where join preservation fails in the bounded Turing degrees of c.e. sets;Information and Computation;2017-10

4. Non-low2-ness and computable Lipschitz reducibility;Acta Mathematica Sinica, English Series;2017-06-25

5. A uniform version of non-low2-ness;Annals of Pure and Applied Logic;2017-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3