Abstract
AbstractA general strategy for proving completeness theorems for quantified modal logics is provided. Starting from free quantified modal logic K. with or without identity, extensions obtained either by adding the principle of universal instantiation or the converse of the Barcan formula or the Barcan formula are considered and proved complete in a uniform way. Completeness theorems are also shown for systems with the extended Barcan rule as well as for some quantified extensions of the modal logic B. The incompleteness of Q°.B + BF is also proved.
Publisher
Cambridge University Press (CUP)
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献