Author:
Bellantoni Stephen,Hofmann Martin
Abstract
AbstractA classical quantified modal logic is used to define a “feasible” arithmetic whose provably total functions are exactly the polynomial-time computable functions. Informally, one understands ⃞∝ as “∝ is feasibly demonstrable”. differs from a system that is as powerful as Peano Arithmetic only by the restriction of induction to ontic (i.e., ⃞-free) formulas. Thus, is defined without any reference to bounding terms, and admitting induction over formulas having arbitrarily many alternations of unbounded quantifiers. The system also uses only a very small set of initial functions.To obtain the characterization, one extends the Curry-Howard isomorphism to include modal operations. This leads to a realizability translation based on recent results in higher-type ramified recursion. The fact that induction formulas are not restricted in their logical complexity, allows one to use the Friedman A translation directly.The development also leads us to propose a new Frege rule, the “Modal Extension” rule: if ⊢ ∝ a then ⊢ A ↔ ∝ for new symbol A.
Publisher
Cambridge University Press (CUP)
Reference25 articles.
1. Predicative Arithmetic. (MN-32)
2. A mixed modal/linear lambda calculus with applications to Bellantoni-Cook safe recursion;Hofmann;CSL '97,1998
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献