Multiplication complexe et équivalence élémentaire dans le langage des corps (Complex multiplication and elementary equivalence in the language of fields)
-
Published:2002-06
Issue:2
Volume:67
Page:635-648
-
ISSN:0022-4812
-
Container-title:Journal of Symbolic Logic
-
language:en
-
Short-container-title:J. symb. log.
Abstract
AbstractLet K and K′ be two elliptic fields with complex multiplication over an algebraically closed field k of characteristic 0. non k-isomorphic, and let C and C′ be two curves with respectively K and K′ as function fields. We prove that if the endomorphism rings of the curves are not isomorphic then K and K′ are not elementarily equivalent in the language of fields expanded with a constant symbol (the modular invariant). This theorem is an analogue of a theorem from David A. Pierce in the language of k-algebras.
Publisher
Cambridge University Press (CUP)
Reference9 articles.
1. Elliptic Functions
2. First-Order Conformal Invariants
3. Équivalence élémentaire de corps elliptiques;Vidaux;Comptes Rendus de l'Académie des Sciences. Série I. Mathématique,2000
4. Function fields and elementary equivalence;Pierce;Bulletin of the London Mathenatical Society,1999