Author:
Soskova Mariya I.,Cooper S. Barry
Abstract
§1. Introduction. Sacks [16] showed that every computably enumerable (c.e.) degree > 0 has a c.e. splitting. Hence, relativising, every c.e. degree has a Δ2 splitting above each proper predecessor (by ‘splitting’ we understand ‘nontrivial splitting’). Arslanov [1] showed that 0′ has a d.c.e. splitting above each c.e. a < 0′. On the other hand, Lachlan [11] proved the existence of a c.e. a < 0 which has no c.e. splitting above some proper c.e. predecessor, and Harrington [10] showed that one could take a = 0′. Splitting and nonsplitting techniques have had a number of consequences for definability and elementary equivalence in the degrees below 0′.Heterogeneous splittings are best considered in the context of cupping and non-cupping. Posner and Robinson [15] showed that every nonzero Δ2 degree can be nontrivially cupped to 0′, and Arslanov [1] showed that every c.e. degree > 0 can be d.c.e. cupped to 0′ (and hence since every d.c.e., or even n-c.e., degree has a nonzero c.e. predecessor, every n-c.e. degree > 0 is d.c.e. cuppable). Cooper [4] and Yates (see Miller [13]) showed the existence of degrees noncuppable in the c.e. degrees. Moreover, the search for relative cupping results was drastically limited by Cooper [5], and Slaman and Steel [17] (see also Downey [9]), who showed that there is a nonzero c.e. degree a below which even Δ2 cupping of c.e. degrees fails.We prove below what appears to be the strongest possible of such nonsplitting and noncupping results.
Publisher
Cambridge University Press (CUP)
Reference18 articles.
1. Recursively Enumerable Sets and Degrees
2. On the Degrees Less than 0 �
3. Harrington L. , Understanding Lachlan s monster paper, 1980, handwritten notes.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献