Intensional models for the theory of types

Author:

Muskens Reinhard

Abstract

AbstractIn this paper we defineintensionalmodels for the classical theory of types, thus arriving at an intensional type logic ITL. Intensional models generalize Henkin's general models and have a natural definition. As a class they do not validate the axiom of Extensionality. We give a cut-free sequent calculus for type theory and show completeness of this calculus with respect to the class of intensional models via a model existence theorem. After this we turn our attention to applications. Firstly, it is argued that, sinceITLis truly intensional, it can be used to model ascriptions of propositional attitude without predictinglogical omniscience. In order to illustrate this a small fragment of English is defined and provided with anITLsemantics. Secondly, it is shown thatITLmodels contain certain objects that can be identified withpossible worlds. Essential elements of modal logic become available within classical type theory once the axiom of Extensionality is given up.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Propositional Quantifiers;2024-04-23

2. Intensional logic;Handbook of Pragmatics;2022-08-15

3. A Theory of Necessities;Journal of Philosophical Logic;2021-08-27

4. Closed Structure;Journal of Philosophical Logic;2021-05-08

5. Extensional Higher-Order Paramodulation in Leo-III;Journal of Automated Reasoning;2021-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3