Abstract
AbstractWe examine a definition of the mutual information of two reals proposed by Levin in [5]. The mutual information iswhereK(·) is the prefix-free Kolmogorov complexity. A realAis said to have finite self-information ifI (A : A)is finite. We give a construction for a perfect Π10class of reals with this property, which settles some open questions posed by Hirschfeldt and Weber. The construction produces a perfect set of reals withK(σ)≤+KA(σ)+f (σ)for any given Δ20fwith a particularly nice approximation and for a specific choice of f it can also be used to produce a perfect Π10set of reals that are low for effective Hausdorff dimension and effective packing dimension. The construction can be further adapted to produce a single perfect set of reals that satisfyK(σ)≤+KA(σ)+f (σ)for allfin a ‘nice’ class of Δ20functions which includes all Δ20orders.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. SOME CONSEQUENCES OF AND;The Journal of Symbolic Logic;2023-05-15
2. ON REALS WITH -BOUNDED COMPLEXITY AND COMPRESSIVE POWER;The Journal of Symbolic Logic;2016-09
3. Lowness for effective Hausdorff dimension;Journal of Mathematical Logic;2014-12